Hyperloop concept fromthe Delft University of technology think tank

3D printer manufacturer voxeljet supports Hyperloop project with 3D-printed PMMA molds for investment casting of aluminum parts. If it were up to visionary Elon Musk, Hyperloop would be the transportation means of the future.

It is expected to be as fast as an airplane and as comfortable as a train. His vision of the futuristic transportation system: pods that shoot through a tube at speeds of up to 1,225 kilometers per hour. Tesla founder Musk organized a global contest in which universities and freelance engineering teams were invited to compete for the development project.

YouTube

By loading the video, you accept YouTube's privacy policy.
Mehr erfahren

load video

The Dutch team had previously taken second place in the first round of the contest with their idea, winning out against more than one hundred teams. They conceded defeat only to the U.S.-based MIT (Massachusetts Institute of Technology). The participants from universities in Wisconsin, Virginia and California came in third. During the second phase of the contest, the three best teams were allowed to reconstruct their designs for the Hyperloop capsule true-to-scale as a 1:2 model.

The PMMA patterns for the casting process were printed on a VX1000 3D printer in the voxeljet service center in Friedberg, Germany. The universal 3D printer is well suited to various industrial applications and makes it possible to economically produce everything from individual parts to small batches. With a build volume of 300 liters (1,000 x 600 x 500 cubic millimeters), all 25 casting patterns needed were produced in a single printing operation lasting less than 24 hours. The components’ high degree of detail was achieved with a print resolution of 600 dpi, combined with a layer thickness of only 150 micrometers.

Producing complex investment casting patterns fast and produced economically

The printed patterns were mounted on a wax tree for the casting process. The tree was embedded in ceramic, which was then placed in the oven for hardening. The aluminum could be cast once the wax and the PMMA casting molds had been burnt out. In the end, the aluminum was subjected to a T6 heat treatment, which improved the strength and made further processing easier. “Despite the small volume, we were able to produce the complex investment casting patterns cost-effectively and within a short period of time, thanks to the binder jetting 3D printing technology,” explains Florian Rauscher, the project manager with voxeljet Customer Services.

Although there is practically no air pressure within the tube, residual drag does prevail, due to the pod’s high velocity, which is close to the speed of sound. This was also the reason why the Delft Hyperloop pod was given an aerodynamic shape. As can be seen from the illustrations, the pod resembles a water droplet, since this is the optimum shape for minimizing drag. However, this led to another challenge: the suspension had to be aerodynamically connected to this organic shape, since it is nearly impossible to mill a curved or doubly curved surface. The Delft team solved this problem by using the casting method, which has extensive design options.

Further Case Studies

Get in touch


3D Printing Solutions

Would you like to learn more about voxeljet and 3D printing? Click here for the entire voxeljet solution portfolio.

Learn more
Scroll up